-- 作者: max123
-- 发布时间: 2005/02/07 01:28am
http://www.engineeringpage.com/info/he/typU.html TYPICAL OVERALL HEAT TRANSFER COEFFICIENTS (U - VALUES) Shell and Tube Heat Exchangers Hot Fluid Cold Fluid U [W/m2C]
-------------------------------------------------------------------------------- Heat Exchangers Water Water 800 - 1500 Organic solvents Organic Solvents 100 - 300 Light oils Light oils 100 - 400 Heavy oils Heavy oils 50 - 300 Reduced crude Flashed crude 35 - 150 Regenerated DEA Foul DEA 450 - 650 Gases (p = atm) Gases (p = atm) 5 - 35 Gases (p = 200 bar) Gases (p = 200 bar) 100 - 300 Coolers Organic solvents Water 250 - 750 Light oils Water 350 - 700 Heavy oils Water 60 - 300 Reduced crude Water 75 - 200 Gases (p = atm) Water 5 - 35 Gases (p = 200 bar) Water 150 - 400 Gases Water 20 - 300 Organic solvents Brine 150 - 500 Water Brine 600 - 1200 Gases Brine 15 - 250 Heaters Steam Water 1500 - 4000 Steam Organic solvents 500 - 1000 Steam Light oils 300 - 900 Steam Heavy oils 60 - 450 Steam Gases 30 - 300 Heat Transfer (hot) Oil Heavy oils 50 - 300 Heat Transfer (hot) Oil Gases 20 - 200 Flue gases Steam 30 - 100 Flue gases Hydrocarbon vapours 30 -100 Condensers Aqueouos vapours Water 1000 - 1500 Organic vapours Water 700 - 1000 Refinery hydrocarbons Water 400 - 550 Vapours with some non condensibles Water 500 - 700 Vacuum condensers Water 200 - 500 Vaporisers Steam Aqueouos solutions 1000 - 1500 Steam Light organics 900 - 1200 Steam Heavy organics 600 - 900 Heat Transfer (hot) oil Refinery hydrocarbons 250 - 550 -------------------------------------------------------------------------------- Air Cooled Exchangers Process Fluid U [W/m2C] -------------------------------------------------------------------------------- Water 300 - 450 Light organics 300 - 700 Heavy organics 50 - 150 Gases 50 - 300 Condensing hydrocarbons 300 - 600 -------------------------------------------------------------------------------- Immersed coils Coil Pool U [W/m2C] -------------------------------------------------------------------------------- Natural circulation Steam Dilute aqueouos solutions 500 - 1000 Steam Light oils 200 - 300 Steam Heavy oils 70 - 150 Aqueouos solutions Water 200 - 500 Light oils Water 100 - 150 Agitated Steam Dilute aqueouos solutions 800 - 1500 Steam Light oils 300 - 500 Steam Heavy oils 200 - 400 Aqueouos solutions Water 400 - 700 Light oils Water 200 - 300 -------------------------------------------------------------------------------- Jacketed vessels Jacket Vessel U [W/m2C] -------------------------------------------------------------------------------- Steam Dilute aqueouos solutions 500 - 700 Steam Light organics 250 - 500 Water Dilute aqueouos solutions 200 - 500 Water Light organics 200 - 300
-- 作者: max123
-- 发布时间: 2005/02/07 01:29am
TYPICAL FOULING FACTORS: COOLING WATER - Fouling Factors in [m2K/W] Conditions cooling water < 50 ° C cooled fluid < 120 ° C cooling water > 50 ° C cooled fluid > 120 ° C Water velocity v < 1 m/s v > 1 m/s v < 1 m/s v > 1 m/s Type of Water Sea 0.00009 0.00009 0.00018 0.00018 Brackish 0.00035 0.00018 0.00053 0.00035 Cooling tower with inhibitor 0.00018 0.00018 0.00035 0.00035 Cooling tower without inhibitor 0.00053 0.00053 0.00088 0.00070 City grid 0.00018 0.00018 0.00035 0.00035 River mimimum 0.00018 0.00018 0.00035 0.00035 River average 0.00053 0.00035 0.00070 0.00035 Engine jacket 0.00018 0.00018 0.00018 0.00018 Demineralized or distilled 0.00009 0.00009 0.00009 0.00009 Treated Boiler Feedwater 0.00018 0.00009 0.00018 0.00018 Boiler blowdown 0.00035 0.00035 0.00035 0.00035 -------------------------------------------------------------------------------- SEVERAL FLUIDS - Fouling Factors in [m2K/W] Group Fluid Fouling Factor Oil Gasoil 0.00009 Transformer 0.00018 Lubrication 0.00018 Heat Transfer oil 0.00018 Hydraulic 0.00018 Gas and Vapour Hydrogen 0.00176 Engine exhaust 0.00176 Steam 0.00009 Steam with oiltraces 0.00018 Cooling fluid vapours with oil traces 0.00035 Organic solvent vapours 0.00018 Compressed air 0.00035 Natural gas 0.00018 Stable top products 0.00018 Liquid Cooling Fluid 0.00018 Organic heat transfer fluids 0.00018 Salts 0.00009 LPG, LNG 0.00018 MEA and DEA (Amines) solutions 0.00035 DEG and TEG (Glycols) solutions 0.00035 Stable side products 0.00018 Stable bottom products 0.00018 Caustics 0.00035 Vegetable Oils 0.00053 -------------------------------------------------------------------------------- REFINERY FLUIDS - Fouling Factors in [m2K/W] Crude - wet, (bearing salty water) Temperature 0 to 95 ° C 95 to 160 ° C 160 to 260 ° C > 95 ° C Velocity < 0.6 m/s 0.00053 0.00088 0.00105 0.00123 0.6 m/s to 1.2 m/s 0.00035 0.00070 0.00088 0.00106 > 1.2 m/s 0.00035 0.00070 0.00070 0.00088 Crude - dry Temperature 0 to 95 ° C 95 to 160 ° C 160 to 260 ° C > 95 ° C Velocity < 0.6 m/s 0.00053 0.00053 0.00070 0.00088 0.6 m/s to 1.2 m/s 0.00035 0.00035 0.00053 0.00070 > 1.2 m/s 0.00035 0.00035 0.00035 0.00053 Products Gasoline 0.00018 Naphtha and Light Distillates 0.00018 Kerosene 0.00018 Light gas oil 0.00035 Heavy gas oil 0.00053 Heavy fuel oils 0.00088 Asphalt and residuum 0.00176 Cracking and Coking Units streams Overhead vapors 0.00035 Light cycle oil 0.00035 Heavy cycle oil 0.00053 Light coker gas oil 0.00053 Heavy coker gas oil 0.00070 Bottom slurry (> 1.5 m/s) 0.00053 Bottom liquid products 0.00035 Catalytic Reforming, Hydrocracking, Hydrodesulfurization (HDS) Reformer charge 0.00035 Reformer effluent 0.00018 Hydrocracker charge and effluent 0.00035 Recycle gas 0.00018 HDS charge and effluent 0.00035 Overhead vapors 0.00018 Liquid product > 50 API 0.00018 Liquid product 30 to 50 API 0.00035 Light Ends processing streams Overhead vapors and gases 0.00018 Liquid products 0.00018 Absorption oils 0.00035 Alkylation trace acid streams 0.00053 Reboiler streams 0.00053 Lube oil processing streams 0.00053 Feed stock 0.00035 Solvent feed mix 0.00035 Solvent 0.00018 Extract 0.00035 Raffinate 0.00018 Asphalt 0.00088 Wax slurries 0.00053 Refined lube oil 0.00018
-- 作者: max123
-- 发布时间: 2005/02/07 01:32am
http://www.engineeringpage.com/info/he/HEside.html FLUID ALLOCATION: CHOICE BETWEEN SHELL OR TUBE SIDE Introduction The choice of the allocation of the fluid to the shell side or tube side can have a significant impact on the performance, economics and maintainability of a heat exchanger. For most design work a balanced decision is required as the considerations can lead to opposite preferences. Some general guidelines are provided underneath: Fouling There are many mechanisms of fouling. Allocating the most fouling fluid to the tube side will be more favourable as mechanical cleaning of the inside of the tubes wil be much easier. As the allowable velocity in the tubes is usually higher than at the shell side and a high fluid velocity causes attrition of the deposits, it is possible to reduce fouling by design. Mechanical Design Pressure It will be more econamical to put the medium with the highest maximum allowable working pressure at the tube side. If the shell side needs to be designed for a high pressure the wall thickness will increase making the heat exchanger more expensive. Corrosion If you need an expensive corrosion resistant material it will be more economical to place the corrosive fluid in the tubes as this will reduce the costs of the shell material or cladding. High Viscosity or Low Flowrates To obtain an economic design high heat transfer coefficients are required. As heat transfer coefficients are much higher for turbulent flow this is the most important aspect to look into. For a highly viscous medium or a low flowrate turbulent flow can be obtained easier at the shell side. If the Reynolds number at the shell side is below 200, however, it will probably be cheaper to allocate this fluid to the tube side and use a high number of tube passes. Use the thermal rating calculation routine to do trial and error runs and get an economical design.
-- 作者: Shaw
-- 发布时间: 2005/02/07 02:10am
有用,但很难记住。[size=6]文字[/size][color=#006400]文字[/color]
|